

С малым гидравлическим сопротивлением

Термостатические радиаторные клапаны

Термостатические клапаны без предварительной настройки

> Engineering GREAT Solutions

С малым гидравлическим сопротивлением

Термостатические клапаны с малым гидравлическим сопротивлением применяются в двухтрубных низкотемпературных системах отопления с небольшой разницей температур и в традиционных однотрубных системах отопления.

Ключевые особенности

- Двойное уплотнительное кольцо
 Для обеспечения надежной работы
- Корпус из литьевой бронзы,
 Коррозионная стойкость и
 безопасность
- Замена термостатической вставки под давлением для DN 10 и DN 15

Технические характеристики

Область применения:

Системы отопления

Функция:

Регулирование Закрытие

Диапазон размеров:

DN 10-32

Номинальное давление:

PN 10

Температура:

Макс. рабочая температура: 120°C, с защитным колпачком или приводом 100°C.

Мин. рабочая температура: -10°C

Материал:

Корпус клапана: коррозинно-стойкая литьевая бронза Уплотнение: EPDM

Конус клапана: EPDM Возвратная пружина: Нержавеющая

сталь Вставка клапана: Латунь Всю верхнюю часть клапана мох

Всю верхнюю часть клапана можно заменить с помощью монтажного инструмента HEIMEIER, не сливая теплоноситель из системы (DN 10, DN 15).

Шток: Шток из стали Niro с уплотнением. Наружное уплотнительное кольцо можно заменить под давлением.

Обработка поверхностей:

Корпус клапана и фитинги покрыты никелем.

Маркировка:

Маркировка ТНЕ; код страны; стрелка; указывающая направления потока; маркировка DN и KEYMARK Обозначение.

Голубой защитный колпачок. Коробка маркирована голубой этикеткой (DN 10, DN 15).

КЕҮМАРК - сертификация термостатических клапанов и термостатических головок (Брошюра «Термостатические головки»).

Соединение:

Клапаны могут соединяться со стальными трубами или трубами из медьсодержащих прецизионных сплавов или трубами Verbund при помощи компрессионных фитингов (только клапаны DN 15). При помощи компрессионных фитингов клапаны с наружной резьбой могут соединяться с пластиковой трубой.

Соединение термостатических головок и приводов:

IMI Heimeier M30x1.5

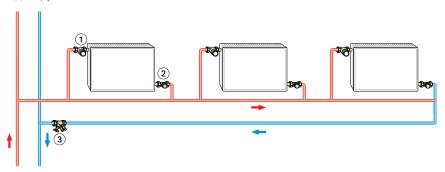
Конструкция

- Размер седла клапана предусмотрен для систем с большим массовым расходом
- 2. Корпус выполнен из коррозионно-стойкой никелированной бронзы.

Применение

Термостатические клапаны с малым гидравлическим сопротивлением применяются в двухтрубных низкотемпературных системах теплоснабжения с небольшой разницей температур и в традиционных однотрубных системах отопления.

Согласно стандартам EnEV и DIN V4701-10, клапаны могут разрабатываться с регулировочной разницей в пределах от 1 К до 2 К, обеспечивая широкий спектр расхода. Для проведения гидравлической балансировки, которая является дополнительным требованием для двухтрубных систем теплоснабжения, используются соответствующие запорно-регулирующие клапаны, такие как Regulux.


Шумовые характеристики

Для обеспечения низкого уровня шума должны быть выполнены следующие условия:

- Опыт показывает, что перепад давлений на термостатических клапанах не должен превышать приблизительно 20 кПа = 200 мбар = 0,2 бар. Если при проектировании системы могут возникнуть более высокие разницы в диапазоне потока средней нагрузки, можно использовать управляющее оборудование на основе перепада давлений, такое как контроллер перепада давлений STAP или перепускные клапаны Hydrolux.
- Массовый расход должен быть правильно отрегулирован.
- Воздух должен быть полностью удален из системы.

Варианты применения

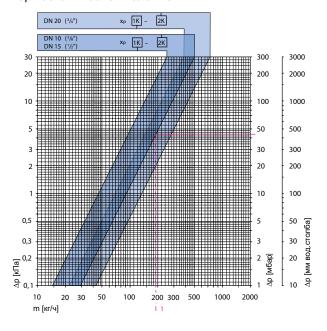
Однотрубная система отопления

- 1. Термостатический клапан с малым гидравлическим сопротивлением
- 2. Запорно-регулирующий клапан
- 3. Балансировочный клапан STAD

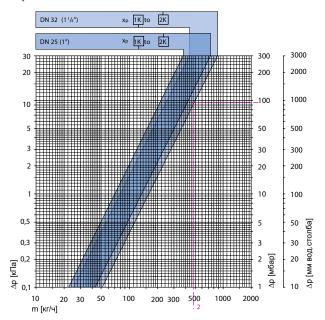
Примечание

 во избежание повреждения и отложения накипи в системе подачи горячей воды, состав теплоносителя должен соответствовать стандарту 2035VDI.

Для промышленных и магистральных энергетических систем, смотрите применимые нормыVdTÜV и 1466/AGFW FW 510. Если теплоноситель содержит минеральные масла, или другой тип смазочного вещества, содержащего минеральное масло, это может оказать сильное негативное воздействие на уплотнение из EPDM-каучука, что, как правило, приводит к нарушению герметизации клапана.


При использовании безнитритных холодостойких и коррозионностойких растворов на этиленгликолевом основании, особое внимание стоит обратить на детали,

изложенные в документации производителя, особенно на те, которые касаются концентрации и специальных добавок.


 корпуса терморегуляторов могут использоваться со всеми терморегулирующими головками IMI Heimeier и термическими или механизированными приводами.
 Оптимальная настройка деталей гарантирует максимальную безопасность. При использовании приводов от других производителей, убедитесь, что их усилие закрытия подходит для термостатических клапанов.

Технические характеристики

Диаграмма для клапанов DN 10 (3/8") - DN 20 (3/4") с термостатической головкой

Диаграмма для клапанов DN 25 (1") и DN 32 (1 1/4") с термостатической головкой

Пример расчета 1→Пример расчета 2

Клапан с термостатической головкой	Значен	Kv ние р-диа [K]	пазона	Kvs	Kvs	Kvs		ый перепад дав клапан закрыт	· -
	1.0	1,5	2,0	угловой	проходной, осевой	двойной угловой	Термостат. головка	EMO T-TM/NC EMOtec/NC EMO 1/3 EMO EIB/LON	EMO T/NO EMOtec/NO
DN 10 (3/8")	0,46	0,70	0,92	2,30	1,80	1,50	0,60	1,50	3,00
DN 15 (1/2")	0,46	0,70	0,92	3,10	2,50	1,85	0,60	1,50	3,00
DN 20 (3/4")	0,70	1,04	1,35	5,70	4,50		0,25	0,50	1,00
DN 25 (1")	0,70	1,04	1,35	5,70	5,70		0,25	0,80	1,60
DN 32 (1 1/4")	0,80	1,10	1,60	6,70	6,70		0,25	0,50	1,00

Коэффициенты Kv/Kvs = м³/ч при падении давлений 1 бар.

Пример расчета 1

Задача:

Найти потерю давления на термостатическом клапане с особо малым гидравлическим сопротивлением DN 15 с регулировочной разницей 2 К

Дано:

Тепловой поток Q = 2210 Вт

Разница температур $\Delta t = 10 \text{ K (55/45°C)}$

Решение:

Массовый расход

 $m = Q / (c \cdot \Delta t) = 2210 / (1,163 \cdot 10) = 190 (KF/4)$

Потеря давления из диаграммы $\Delta p_{\nu} = 44$ мбар

Пример расчета 2

Задача:

Подобрать соответствующий термостатический клапан с особо малым гидравлическим сопротивлением

Дано:

Тепловой поток Q = 8375 Вт

Разница температур $\Delta t = 15 \text{ K (70/55°C)}$

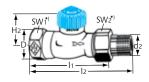
Потеря давления на термостатическом клапане Др., = 95 мбар

Решение:

Массовый расход

 $m = Q / (c \cdot \Delta t) = 8375 / (1,163 \cdot 15) = 480 (\kappa \Gamma / 4)$

Термостатический клапан с особо малым гидравлическим сопротивлением из диаграммы: DN 32 (1 1/4")



Артикулы изделий

Угловая модель

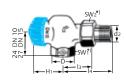
DN	D	d2	13	14	15	H1	Kv [xp] 1 K / 2 K	Kvs	№ изделия
10	Rp3/8	R3/8	26	52	22	21,5	0,46 / 0,92	2,30	2241-01.000
15	Rp1/2	R1/2	29	58	26	21,5	0,46 / 0,92	3,10	2241-02.000
20	Rp3/4	R3/4	34	66	29	21,5	0,70 / 1,35	5,70	2241-03.000
25	Rp1	R1	40	75	32,5	23	0,70 / 1,35	5,70	2201-04.000
32	Rp1 1/4	R1 1/4	46	85	39	23	0,80 / 1,60	6,70	2201-05.000

Проходная модель

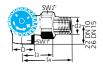
DN	D	d2	l1	12	H2	Kv [xp] 1 K / 2 K	Kvs	№ изделия
10	Rp3/8	R3/8	59	85	21,5	0,46 / 0,92	1,80	2242-01.000
15	Rp1/2	R1/2	66	95	21,5	0,46 / 0,92	2,50	2242-02.000
20	Rp3/4	R3/4	74	106	23,5	0,70 / 1,35	4,50	2242-03.000
25	Rp1	R1	84	118	30,5	0,70 / 1,35	5,70	2202-04.000
32	Rp1 1/4	R1 1/4	95	135	30,5	0,80 / 1,60	6,70	2202-05.000

Проходная модель

плоское уплотнение


DN	d1	H2	Kv [xp] 1 K / 2 K	Kvs	№ изделия	
15	G3/4	21.5	0.46/ 0.92	2.50	2276-02.000	

Проходная модель


с коленом

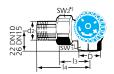
DN	D	d2	I1	H2	Kv [xp] 1 K / 2 K	Kvs	№ изделия
15	Rp1/2	R1/2	66	21,5	0,46 / 0,92	2,50	2244-02.000

Осевой

DN	D	d2	13	14	H1	Kv [xp] 1 K / 2 K	Kvs	№ изделия
10	Rp3/8	R3/8	26	52	31,5	0,46 / 0,92	1,80	2245-01.000
15	Rp1/2	R1/2	29	58	31,5	0,46 / 0,92	2,50	2245-02.000

Двойной угловой

Монтаж на радиаторе - слева


DN	D	d2	13	14	Kv [xp] 1 K / 2 K	Kvs	№ изделия
10	Rp3/8	R3/8	26	52	0,46 / 0,92	1,50	2341-01.000
15	Rp1/2	R1/2	29	58	0,46 / 0,92	1,85	2341-02.000

Двойной угловой

с внешней резьбой G 3/4 Монтаж на радиаторе - слева

DN	d1	d2	13	14	Kv [xp] 1 K / 2 K	Kvs	№ изделия
15	G3/4	R1/2	29	58	0,46 / 0,92	1,85	2343-02.000

Двойной угловой

Монтаж на радиаторе - справа

DN	D	d2	13	14	Kv [xp] 1 K / 2 K	Kvs	№ изделия
10	Rp3/8	R3/8	26	52	0,46 / 0,92	1,50	2340-01.000
15	Rp1/2	R1/2	29	58	0,46 / 0,92	1,85	2340-02.000

Двойной угловой

с внешней резьбой G 3/4 Монтаж на радиаторе - справа

DN	d1	d2	13	14	Kv [xp] 1 K / 2 K	Kvs	№ изделия	
15	G3/4	R1/2	29	58	0,46 / 0,92	1,85	2342-02.000	_

*) SW1: DN 10 = 22 mm, DN 15 = 27 mm, DN 20 = 32 mm, DN 25 = 41 mm, DN 32 = 49 mm SW2: DN 10 = 27 mm, DN 15 = 30 mm, DN 20 = 37 mm, DN 25 = 47 mm, DN 32 = 52 mm

Значения Н1 и Н2 - расстояние от оси клапана до края термостатической вставки.

 $Kvs = M^3/4$ ас при перепаде давления в 1 бар и полностью открытом клапане. Kv [xp] макс. 1 K / 2 K = $M^3/4$ при падении давления 1 бар с термостатической головкой.

Аксессуары

Монтажный инструмент

в комплекте с футляром, торцевым гаечным ключом и сменными уплотнениями для замены термостатических клапанов без дренажа системы (для клапанов DN 10 - DN 20).

	№ изделия
Монтажный инструмент	9721-00.000
Сменные уплотнения	9721-00.514

Компрессионный фитинг

для медных и стальных тонкостенных

Соединение с внутренней резьбой Rp 3/8-Rp 3/4.

Уплотнение металл-металл. Никелированная латунь.

При толщине стенки трубы 0,8 –1 мм необходимо использовать опорные втулки. Соблюдайте рекомендации изготовителя труб.

Ø трубы	DN	№ изделия
12	10 (3/8")	2201-12.351
14	15 (1/2")	2201-14.351
15	15 (1/2")	2201-15.351
16	15 (1/2")	2201-16.351
18	20 (3/4")	2201-18 351

Опорная втулка

для медных или стальных тонкостенных труб с толщиной стенки 1 мм. Латунь.

Ø трубы	L	№ изделия
12	25,0	1300-12.170
15	26,0	1300-15.170
16	26,3	1300-16.170
18	26.8	1300-18.170

для крепления пластиковых, медных, тонкостенных стальных или металлопластиковых труб. Латунный, никелированный.

	L	№ изделия
G3/4 x R1/2	26	1321-12.083

Компрессионный фитинг

для медных и стальных тонкостенных

Соединение с наружной резьбой G3/4. Уплотнение металл-металл.

Никелированная латунь.

При толщине стенки трубы 0,8 –1 мм необходимо использовать опорные втулки. Соблюдайте рекомендации изготовителя труб.

Ø трубы	№ изделия
12	3831-12.351
14	3831-14.351
15	3831-15.351
16	3831-16.351
18	3831-18.351

Компрессионный фитинг

для медных и тонкостенных стальных труб.

Соединение с наружной резьбой G3/4. Мягкое уплотнение.

Никелированная латунь.

Ø трубы	№ изделия
15	1313-15.351
16	1313-16.351
18	1313-18.351

Компрессионный фитинг

для пластмассовых труб.

Соединение с наружной резьбой G3/4. Конусное соединение уплотнительным кольцом.

Никелированная латунь.

Ø трубы	№ изделия
12x1,1	1315-12.351
14x2	1311-14.351
16x1,5	1315-16.351
16x2	1311-16.351
17x2	1311-17.351
18x2	1311-18.351
20x2	1311-20.351

Компрессионный фитинг

для металлопластиковых труб. Соединение с наружной резьбой G3/4. Никелированная латунь.

Ø трубы	№ изделия
14x2	1331-14.351
16x2	1331-16.351
18x2	1331-18.351

